Effects of Charging and Crystallinity on Sputter-Etching Rate of Al₂O₃ Single Crystal

S. Araki, H. Tohma, and SERD Project Group of Surface Analysis Society of Japan

NISSAN ARC, LTD., 1, Natsushima, Yokosuka 237-0061, Japan

(Received May 8, 2002; accepted June 25, 2002)

In this study, we examined Ar⁺ ion sputter etching rate ratio RAl₂O₃/RSiO₂ under different surface charging conditions and in different incident azimuthal directions of Ar⁺ ion. When the surface charging of specimen was neutralized by irradiation with low-energy electrons, RAl₂O₃ became larger than that of specimens without any electron irradiation at same ion current density. When the specimen was bombarded by Ar⁺ ion from the azimuthal direction parallel to the a-axis on the surface of Al₂O₃ single crystal, RAl₂O₃/RSiO₂ became higher than that of specimen bombarded from the azimuthal direction vertical to the a-axis. The effects of surface charging and incident azimuthal direction of Ar⁺ ion on RAl₂O₃/RSiO₂ are discussed respectively on the basis of the experimental results.

1. Introduction

In AES (Auger Electron Spectroscopy), XPS (X-ray Photoelectron Spectroscopy) and SIMS (Secondary Ion Mass Spectrometry) depth profiling measurements, the sputter-etching rate, R, is a very important factor in determining the sputter depth from the sputtering time. The Sputter Etching Rate Database (SERD) project has been undertaken by the Surface Analysis Society of Japan (SASJ) to accumulate data as the ratio (Rc/Rsio₂) of the etching rate for various compounds, Rc, to the rate for thermally oxidized SiO₂ film, Rsio₂ [1].

It has been reported that RGaAs is directly proportional to RSiO₂ and RGaAs/RSiO₂ is independent of the ion current density. However, several compounds such as Al₂O₃ show different behavior, with RAl₂O₃/RSiO₂ tending to decrease in the region of high ion current density. It is thought that this phenomenon is closely related to surface charging.

In this research, we determined RAl₂O₃/RSiO₂ under different surface charging conditions and in different sputter directions. Based on the results, we discuss the effects of surface charging and the incident Ar⁺ ion azimuthal direction on RAl₂O₃/RSiO₂.

2. Experimental Procedure

Sapphire single crystal [α - Al₂O₃ (0001)] and thermally oxidized SiO₂ films were prepared for these experiments. The incident

azimuthal direction of ion etching was parallel to the a-axis for Al₂O₃ single crystal, except when a different incident azimuthal direction was specified.

Sputter-etching rates were measured with the mesh replica method proposed by Suzuki et al. [2]. Cross-sectional profiles were obtained by using a stylus profiler (Sloan, Dektak3030). The average values obtained from more than four measurements were used in plotting the profiles.

Figure 1 shows the experimental ion gun geometry and table 1 shows the experimental conditions.

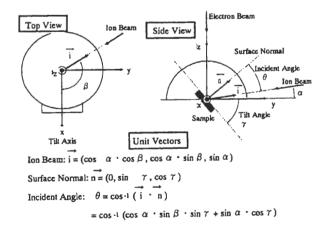


Fig. 1 Ion gun geometry.

Table I	Experimental	conditions
---------	--------------	------------

Instrument	Quantum2000 (PHI)	SAM680 (PHI)
lon gun parameters	$\alpha = 45 \deg$, $\beta = 0 \deg$	$\alpha = 13 \deg_{\alpha} \beta = 90 \deg$
Ion incident angle θ (deg)	45 deg (tilt angle=0 deg)	32 deg (t.a.=45), 62 deg (t.a.=15)
lon current density with Faraday cup at 3 kV (raster size=2 mm×2 mm)	62~67 (A/cm²)	36~50 (A/cm²)
Low energy electron neutralizer	emission current=20 µ A	

3. Results and Discussion

We first determined RAI₂O₃/RSiO₂ under different surface charging conditions. Figure 2 shows RAI₂O₃ as a function of RsiO₂ with an increasing ion current density. In the region of a lower current density, the data confirm that RAl₂O₃ was proportional to RsiO₂. However, in the region of a higher ion current density, deviated from the proportional relationship to Rsio₂ and Ral₂O₃/Rsio₂ decreased (). On the other hand, when the specimen was neutralized by irradiating it with low-energy electrons, RAI₂O₃/RSiO₂ (A) became larger at the same ion current density compared with the ratio for specimens without any irradiation.

Figure 3 shows the stylus profiler images obtained after sputtering, where (a) is the image for a neutralized specimen. It is seen that the bottom of the sputtered zone was flat. The image in (b) for a specimen that was not neutralized shows that the bottom of the sputtered zone was semi-cylindrical. These results indicate that surface charging is a contributing factor to the decrease in RAl₂O₃/RSiO₂.

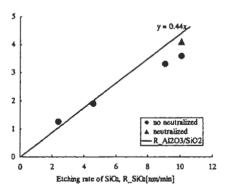


Fig. 2 Etching rate of Al₂O₃ as a function of the rate of SiO₂; incident ion species was Ar⁺ and incident angle was 45 deg. Ion energy was 3keV.

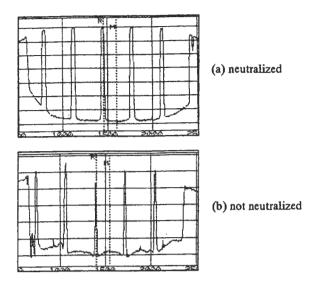


Fig. 3 Stylus profiler images of Al₂O₃ were obtained after sputtering. (a) The specimen was neutralized; (b) the specimen was not neutralized.

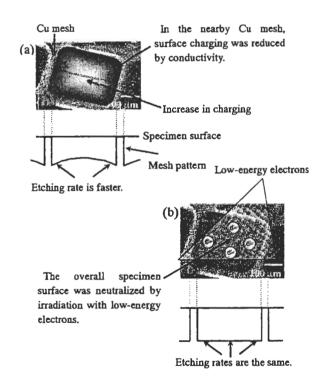


Fig. 4 SEM images and cross-sectional profiles of the specimen surface of an insulator following irradiation with Ar⁺ ions.

Figure 4 shows SEM images and cross-sectional profiles of the specimen surface of an insulator irradiated with Ar⁺ ions. In (a), the specimen was not neutralized. In the nearby Cu mesh, surface charging decreased because

of conductivity, so the sputter-etching rate was faster than that at locations more distant from the Cu mesh. In (b), the overall specimen surface was neutralized, so the same etching rate was obtained throughout the sputter zone.

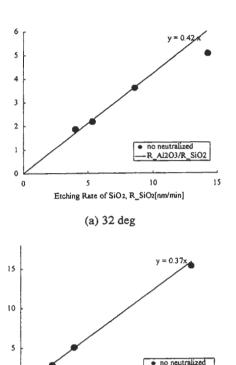


Fig.5 Etching rate of Al_2O_3 as a function of the rate of SiO_2 ; incident ion species was Ar^+ and incident angles was (a) 32 deg. and (b) 62 deg. Ion energy was 3keV.

(b) 62 deg

20

Etching Rate of SiO 2, R_SiO2[nm/min]

30

Al2O3/SiO2

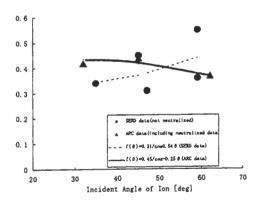


Fig. 6 Relative etching rates of Al₂O₃ to SiO₂ as a function of the incident angle; incident ion species was Ar⁺ and ion energy was 3keV.

Figure 5 shows the etching rate for Al₂O₃ as a function of the rate for SiO₂, when the incident ion species was Ar⁺ and the ion incident angles were 32 and 62 deg., respectively.

Figure incident shows the dependence of the relative etching rates of Al₂O₃ to SiO₂, when the incident ion species was Ar and the ion energy was 3keV. Wider scatter is observed for SERD data () than ARC data including specimen neutralized data (A). Part of the difference between the scatter of two data is attributed to surface charging. For instance, since specimen that was not neutralized shows that sputtered zone is not flat as shown in Fig. 4, it is thought that cross-sectional profiling measurement of error is larger.

Figure 7 shows RAl₂O₃/RSiO₂ for different incident azimuthal directions, either parallel or vertical to the a-axis on the surface of Al₂O₃. RAl₂O₃ in the parallel direction was higher than that in the vertical direction. It is thought that this shows the planar channeling effect on RAl₂O₃.

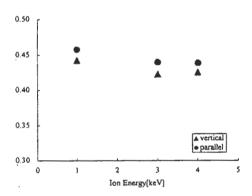


Fig. 7 Relative etching rates of Al₂O₃ to SiO₂ in different incident azimuthal directions, either parallel or vertical to the a-axis on the surface of Al₂O₃.

At higher ion energy levels, the channeling of ions in the "open" crystal directions causes the yield to differ. For instance, in Cu at 5 keV Ar[†] ion bombardment, the sputtering yield of a (111) surface is nearly double that of a (110) surface [3].

In this experiment, ion energy was not very high. However, RAl₂O₃ differed depending on whether the sputter azimuthal direction was parallel or vertical to the a-axis. This result supports the above-mentioned observation that the lattice plane affects the etching rate of a crystal.

The etching rate was then determined for an Al₂O₃ film (Al₂O₃/SiO₂/Si-sub.) obtained by sputtering deposition.

Figure 8 shows RAl₂O₃(film) as a function of Rsio₂ with an increasing ion current density obtained by the mesh replica method. Figure 9 shows the XPS depth profile obtained Al₂O₃/SiO₂/Si-sub with Ouantam-2000 instrument (PHI), and figure 10 shows an SEM image of this sample taken with an SAM680 instrument (PHI). Table 2 shows the etching rate ratio RAI₂O₃/RSiO₂ by the mesh replica method and XPS depth profiling, respectively.

By the mesh replica method, RAl₂O₃(film)/RSiO₂ was 0.59, while RAl₂O₃(sapphire)/RSiO₂ was 0.45. It is thought that the difference in density between the sapphire single crystal and the film obtained by sputtering deposition affected RAl₂O₃. While RAl₂O₃(film)/RSiO₂ was 0.50 by depth profiling, this tendency agree with the thermally oxidized SiO₂ film in SERD report [1].

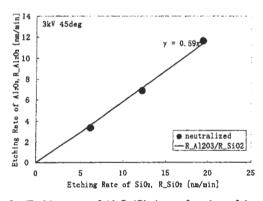


Fig. 8 Etching rate of Al₂O₃(film) as a function of the rate of SiO₂; incident ion species was Ar⁺ and incident angle was 45 deg. Ion energy was 3keV.

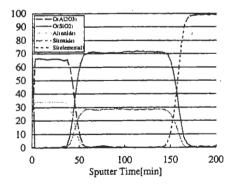


Fig. 9 XPS depth profile of Al₂O₃/SiO₂/Si-sub.

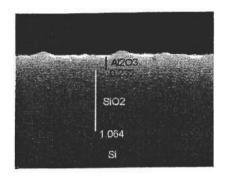


Fig. 10 SEM image of a cross-section of Al₂O₃/SiO₂/Si-sub.

Table 2	Etching rate ratio RAI2O3/RSiO2		
	Sapphire	Sputtering deposition	
Mesh replica method	0.45	0.59	
Depth profiling	_	0.50	

4. Conclusions

- Surface charging is a contributing factor to the decrease in the etching rate observed for an insulator such as Al₂O₃.
- 2) It is thought that the lattice plane affects RAI₂O₃.

References

- [1] SERD Project Group of SASJ, J. Surf. Anal., 8, 76 (2001).
- [2] M. Suzuki, K. Mogi and H. Ando, J. Surf. Anal., 5, 188 (1998).
- [3] A. W. Czanderna, Methods of Surface Analysis, pp. 12 13, Elsevier (1989).